Protein-metal interactions of calmodulin and alpha-synuclein monitored by selective noncovalent adduct protein probing mass spectrometry.
نویسندگان
چکیده
The metal binding properties of proteins are biologically significant, particularly in relationship to the molecular origins of disease and the discovery of therapeutic pharmaceutical treatments. Herein, we demonstrate that selective noncovalent adduct protein probing mass spectrometry (SNAPP-MS) is a sensitive technique to investigate the structural effects of protein-metal interactions. We utilize specific, noncovalent interactions between 18-crown-6 ether (18C6) and lysine to probe protein structure in the presence and absence of metal ions. Application of SNAPP-MS to the calmodulin-Ca2+ system demonstrates that changes in protein structure are reflected in a substantial change in the number and intensity of 18C6s, which bind to the protein as observed by MS. In this manner, SNAPP is demonstrated to be a sensitive technique for monitoring ligand-induced conformational rearrangements in proteins. In addition, SNAPP is well-suited to examine the properties of natively unfolded proteins, where structural changes are more difficult to detect by other methods. For example, alpha-synuclein is a protein associated in the pathology of Parkinson's disease, which is known to aggregate more rapidly in the presence of Al3+ and Cu2+. The 18C6 SNAPP distributions for alpha-synuclein change dramatically in the presence of 3 microM Al3+, revealing that Al3+ binding causes a significant change in the conformational dynamics of the monomeric form of this disordered protein. In contrast, binding of Cu2+ does not induce a significant shift in 18C6 binding, suggesting that noteworthy structural reorganizations at the monomeric level are minimal. These results are consistent with the idea that the metal-induced aggregation caused by Al3+ and Cu2+ proceed by independent pathways.
منابع مشابه
Clioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملApplication of electrospray mass spectrometry in probing protein-protein and protein-ligand noncovalent interactions.
A novel mass spectrometry-based methodology using electrospray ionization (ESI) is described for the detection of protein-protein [interferon (IFN)-γ dimer] and protein-ligand [ras-guanosine diphosphate (GDP)] noncovalent interactions. The method utilizes ESI from aqueous solution at appropriate pH. The presence of the noncovalent complex of the IFN-γ dimer was confirmed by the observed average...
متن کاملStudying noncovalent protein complexes by electrospray ionization mass spectrometry.
Electrospray ionization mass spectrometry has been used to study protein interactions driven by noncovalent forces. The gentleness of the electrospray ionization process allows intact protein complexes to be directly detected by mass spectrometry. Evidence from the growing body of literature suggests that the ESI-MS observations for these weakly bound systems reflect, to some extent, the nature...
متن کاملAlpha-synuclein induced apoptosis and proliferation interacted with CD44 in human lymphocytes
Human ?-synuclein is a 140 amino acid protein with little or no secondary structure. The ?-synuclein is expressed at high levels in the brain and enriched in neural synaptic terminals but its physiological function remains largely unknown. More recently, ?-synuclein has been shown to be one of the principal componets of Lewy bodies, neuronal inclusions that are found in diverse human neurodegen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Society for Mass Spectrometry
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2008